VII. Difficulties in Fixing the Gauge in Non-Abelian Gauge Theories

S. SCIUTO*
CERN, Geneva, Switzerland

Abstract:

Some pir blems arising from the use of the Coulomb gauge in SU(2) Yang-Mills theory are discussed. It is shown that: i) the transver ;ality condition does not fix the gauge uniquely (Gribov ambiguity); ii) there exist physical configurations that cannot be described by a continuous A_{μ} in the Coulomb gauge.

* On leave from Istituto di Fisica teorica dell'Università, Torino, Italy.

1. Introduction

A characteristic feature of any gauge theory is that the number of fields that appear in the Lagrangian is larger than the number of effective degrees of freedom of the theory. Usually one tries to eliminate the redundant variables by imposing a suitable gauge fixing condition. For instance, electrodynamics can be discussed in terms of physical variables (the transverse components of the photon) by choosing the Coulomb gauge:

$$
\begin{equation*}
\partial_{i} A_{i}=0 \tag{1.1}
\end{equation*}
$$

Given any configuration $A_{\mu}^{\prime}(x)$ one can change it to a purely transverse one, satisfying eq. (1.1), by means of a gauge transformation

$$
\begin{equation*}
A_{\mu}=A_{\mu}^{\prime}+\partial_{\mu} \Lambda \tag{1.2}
\end{equation*}
$$

In fact, by substituting eq. (1.2) in eq. (1.1) one gets

$$
\begin{equation*}
-\Delta \Lambda=\partial_{i} A_{i}^{\prime} \tag{1.3}
\end{equation*}
$$

which can be inverted, leading to

$$
\begin{equation*}
\Lambda=-\frac{1}{\Delta} \partial_{i} A_{i}^{\prime} \tag{1.4}
\end{equation*}
$$

Let us note, even if it is almost obvious, that the Laplacian $\Delta \equiv \partial_{i} \partial_{i}$ is an invertible operator only if one requires that $\Lambda(x)$ is regular everywhere and does not explode for $x \rightarrow \infty$. In fact, in order to get one and only one solution of eq. (1.3) one has to impose these boundary conditions in such a way that no solution* of the homogeneous equation

$$
\begin{equation*}
\Delta \Lambda=0 \tag{1.5}
\end{equation*}
$$

exists.
The aim of this lecture is to show that such a simple procedure cannot be directly extended to the non-Abelian case. We will study $\operatorname{SU}(2)$ Yang-Mills theory and we will use the following notation:

$$
\begin{equation*}
A_{\mu}=e A_{\mu}^{i} \cdot \sigma^{i} / 2 \mathrm{i} \tag{1.6}
\end{equation*}
$$

where e is the coupling constant and σ^{i} are the Pauli matrices. A gauge transformation on A_{μ} gives

$$
\begin{equation*}
A_{\mu}^{\prime}=U^{-1} A_{\mu} U+U^{-1} \partial_{\mu} U \tag{1.7}
\end{equation*}
$$

where the matrices $U(x)$ are $S U(2)$ group elements; $U(x)$ can be parametrized in the quaternionic form:

$$
\begin{equation*}
U(x)=U_{4}+\mathrm{i} \sigma^{i} U_{i} \tag{1.8}
\end{equation*}
$$

where $U_{a}(x)(a=1,2,3,4)$ is a unit four-vector which lies on the unit sphere S_{3} :

$$
\begin{equation*}
U_{a} U_{a}=1 \tag{1.9}
\end{equation*}
$$

[^0]If, starting from any $A_{\mu}(x)$, one tries to gauge transform it by means of eq. (1.7) to get an equivalen: potential A_{μ}^{\prime} that satisfies the transversality condition

$$
\begin{equation*}
\partial_{i} A_{i}^{\prime}=0, \tag{1.10}
\end{equation*}
$$

one is led to consider the equation

$$
\begin{equation*}
\partial_{i} A_{i}+\left[\mathrm{D}_{i}(A), \partial_{i} U \cdot U^{-1}\right]=0 \tag{1.11}
\end{equation*}
$$

where $\mathrm{D}_{i}(A)$ is the covariant derivative

$$
\begin{equation*}
\mathrm{D}_{i}(A)=\partial_{i}+A_{i} \tag{1.12}
\end{equation*}
$$

In contrast to its Abelian analogue (1.3), the eq. (1.11) in general does not fix the gauge transformation uniquely. To be more precise, as Gribov [1] was the first to show, for large enough fields the eq. (1.11) admits several solutions; later it was shown [2-4] that there exist also configurations such that eq. (1.11) has no regular solution. In the next sections we will discuss in detail these different cases, starting with the analysis of the classical vacuum structure.

Thrcughout this lecture we will limit our considerations to fields that become a pure gauge at very larga spatial or temporal distances; that is we always suppose:

$$
\begin{equation*}
\lim _{R \rightarrow \infty} A_{\mu}=U^{-1} \partial_{\mu} U \tag{1.13}
\end{equation*}
$$

where $R=\sqrt{x^{2}}$ is the four-dimensional Euclidean distance from the origin. Then regular configurations $A_{\mu}(x)$ will always have finite Euclidean action and Pontryagin number.

2. The vacuum structure

In this section we will work at a fixed time x_{4} and we will discuss the classical vacuum degeneracy in the Coulomb gauge. For pure gauge fields

$$
\begin{equation*}
A_{\mu}=U^{-1} \partial_{\mu} U, \quad F_{\mu v}=0 \tag{2.1}
\end{equation*}
$$

the gauge fixing condition (1.11) reduces to the simple form

$$
\begin{equation*}
\partial_{i}\left(U^{-1} \partial_{i} U\right)=0 \tag{2.2}
\end{equation*}
$$

which is the non-Abelian analogue of the homogeneous equation (1.5). In order to study eq. (2.2). we must first carefully make the boundary conditions precise. We will consider two kinds of boundary conditions.

2.1. Strong boundary conditions (SBC)

One can impose that the limit of the group element $U(x)$ for large distance exists and does not depend on the direction:

$$
\lim _{r \rightarrow \infty} U(r, \theta, \varphi)=\text { const. }
$$

in eq. (2.3) we have used spherical coordinates: $r=\sqrt{\boldsymbol{x}^{2}}, \theta$ is the colatitude and φ is the azimuth. In terms of the potential A_{μ}, given by eq. (2.1), the condition (2.3) means that A_{i} vanishes faster
than $1 / r$ for $r \rightarrow \infty$

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r A_{i}(x)=0 \tag{2.4}
\end{equation*}
$$

So the condition (2.3) is actually very strong and it excludes relevant physical configurations; for instance in presence of a magnetic monopole the potential A_{i} has just a $1 / r$ behaviour. However the strong boundary condition (2.3) has the advantage that it compactifies the \mathbf{R}_{3} space to a sphere S_{3} (by identifying all the points at infinity of R_{3}). Then the mapping $x \rightarrow U(x)$ is a mapping $S_{3} \rightarrow S_{3}$ and it is characterized by an homotopy class in $\pi_{3}\left(S_{3}\right)$. Therefore one can define a topological number

$$
\begin{equation*}
\Phi=\frac{1}{24 \pi^{2}} \int \mathrm{~d}^{3} x \varepsilon_{i j k} \operatorname{Tr}\left(A_{i} A_{j} A_{k}\right)=-\frac{1}{2 \pi^{2}} \int_{\mathbf{I (R _ { 3 })}} \mathrm{d} \alpha \mathrm{~d} \beta \mathrm{~d} \gamma \sin ^{2} \alpha \sin \beta . \tag{2.5}
\end{equation*}
$$

In the last paragraph we have used the expression (2.1) for A_{i}, the parametrizations (1.8) and

$$
U_{a}=\left(\begin{array}{c}
\sin \alpha \sin \beta \cos \gamma \tag{2.6}\\
\sin \alpha \sin \beta \sin \gamma \\
\sin \alpha \cos \beta \\
\cos \alpha
\end{array}\right)
$$

It is clear by éq. (2.5) that Φ must be an integer [for continuous mapping satisfying eq. (2.3)], namely, the number of times the group manifold S_{3} is covered by the image $I\left(R_{3}\right)$ of the space R_{3}.

2.2. Weak boundary conditions (WBC)

Another possibility is that the limit for large r of the group element $U(x)$ exists but does depend on the direction:

$$
\begin{equation*}
\lim _{r \rightarrow \infty} U(r, \theta, \varphi)=U(\theta, \varphi) . \tag{2.7}
\end{equation*}
$$

In such a case, which allows for magnetic monopoles, the potential $\boldsymbol{A}_{i}(x)$ has the following asymptotic behaviour:

$$
\begin{equation*}
A_{i}(x)_{r \rightarrow \infty} \mathrm{O}(1 / r) . \tag{2.8}
\end{equation*}
$$

If the weak boundary conditions (2.7) are imposed, the space $\mathbf{R}_{\mathbf{3}}$ is no longer compactified to S_{3} but rather to the ball B_{3} in 3-dimensional space. Hence the quantity Φ defined in eq. (2.5) loses any topological meaning* and a priori can be any real number; the image $I\left(R_{3}\right)$ can cover the group manifold S_{3} an incomplete number of times, as the image of the boundary $\partial \mathrm{B}_{3}$ does not have to shrink to a point.

Let us note that SBC or WBC can be imposed not only on the vacuum statcs but on any configuration satisfying eq. (1.13). It is important to note that one can consistently choose either weak

* A topological meaning of Φ can be recovered if one imposes some further conditions on $U(\theta, \phi) \equiv U(x / r)$ defined in (2.7). For instance by requiring

$$
\begin{equation*}
U(-x / r)= \pm U(x / r) \tag{2.9}
\end{equation*}
$$

one gets that ϕ must be integer or half integer respectively [5].
or strong boundary conditions; in fact one can p:ove [3] by quite slegant semiclassical arguments, both in the temporal and in the Coulomb gauge, that no tunnelling between configurations with different boundary conditions can occur. In most of the rest of this lecture we shall use the strong boundary conditions (2.3); only in section 5 we shall briefly discuss the weak boundary conditions (2.7).

The vacuum structure in the Coulomb gauge is completely clarified by the following theorem (ref. [3], see also ref. [6]): the transversality condition (1.1), with the strong boundary conditions (2.3), fixes the vacuum uniquely, i.e. the only solution of eq. (2.2) is $U(x)=$ const. which implies $A_{i}(x) \equiv 0$.

The proof [3] consists of two steps.
i) The SBC imply that, for large $r, U(x)$ has the following asymptotic form:

$$
\begin{equation*}
U(x)=M+N(x) \tag{2.10}
\end{equation*}
$$

where $M=$ const. and $N(x)$ vanishes for $r \rightarrow \infty$. By substituting eq. (2.10) in eq. (2.2) one gets that the asymptotic behaviour of $N(x)$ is the following:

$$
\begin{equation*}
\Lambda(x) \underset{r \rightarrow \infty}{=} \mathrm{O}(1 / r) \tag{2.11}
\end{equation*}
$$

ii) Eq. (2.2), that in terms of the four-vector $U_{a}(x)$ takes the form:

$$
\begin{equation*}
\Delta U_{a}=-\left(\partial_{i} U_{b} \cdot \partial_{i} U_{b}\right) U_{a} \tag{2.12}
\end{equation*}
$$

can be imagined to stem from a variational principle applied to the "action" of the non-linear σ model in three dimensions:

$$
\begin{equation*}
W=\int \mathrm{d}^{3} x \partial_{i} U_{a} \partial_{i} U_{a} ; \quad U_{a} U_{a}=1 \tag{2.13}
\end{equation*}
$$

It is easy to prove, by scaling arguments, that $U_{a}(x)=$ const. is the only solution of eq. (2.12) with finite "action" W. However from (2.10) and (2.12) we see that SBC lead to a finite W [if $U_{a}(x)$ is regular everywhere, as we always assume]; then SBC imply that the only solution of (2.12) is $U_{a}(x)=$ const. - Q.E.D.

We anticipate, as we shall see in section 5, that. on the contrary, if one uses WBC the Coulomb condition (2.1) is not able even to fix the vacuum uniquely. In the next section we shall show that the SBC, which are able to remove any ambiguity of the Coulomb gauge for the vacuum states. also allow the existence of several different solutions of eq. (1.11), if the field A_{μ} is large enough.

3. Tne Gribov ambiguity [1]

Still assuming SBC, let us discuss the Coulomb gauge eq. (1.11) for non-vanishing F_{u}. Let us consider a simple example*, starting from a field which is already transverse:

$$
\begin{equation*}
A_{i}=\mathrm{i} \varepsilon_{i j k} \frac{x_{j} \sigma_{k}}{r^{2}} f(r) \tag{3.1}
\end{equation*}
$$

[^1]where $f(r)$ is any smooth function with the boundary conditions:
\[

$$
\begin{equation*}
\lim _{r \rightarrow 0} f(r)=O(r) ; \quad \lim _{r \rightarrow \infty} f(r)=0 \tag{3.2}
\end{equation*}
$$

\]

the first condition is necessary to avoid singularities at $\boldsymbol{x}=0$ and the second one is the transcription of the SBC [eq. (2.4)]. We will consider the subclass of gauge transformations which preserve the spherical symmetry of A_{i} :

$$
\begin{equation*}
U=\exp (\mathrm{i} \alpha(r) \sigma \cdot x / r) \tag{3.3}
\end{equation*}
$$

regularity of A_{i} at the origin and SBC (2.3) fix the asymptotic behaviour of $\alpha(r)$:
a) $\alpha(r) \underset{r \rightarrow 0}{ } n \pi+\gamma r$
b) $\alpha(r) \underset{r \rightarrow \infty}{ } m \pi$,
where m and n are integers and γ is an arbitrary real constant. By inserting eq. (3.1) and eq. (3.3) in eq. (1.11) one gets the following form of the Coulomb gauge condition [1]:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \alpha}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d} \alpha}{\mathrm{~d} r}-\frac{\sin 2 \alpha}{r^{2}}(1+2 f)=0 . \tag{3.5}
\end{equation*}
$$

By the change of variables

$$
\begin{equation*}
s=\ln r \tag{3.6}
\end{equation*}
$$

eq. (3.5) becomes the equation of a damped pendulum with an external force (fig. 1):

$$
\begin{equation*}
\ddot{\alpha}+\dot{\alpha}-\sin 2 \alpha \cdot(1+2 f)=0, \tag{3.7}
\end{equation*}
$$

where

$$
\dot{\alpha}=\mathrm{d} \alpha / \mathrm{ds}, \quad \ddot{\alpha}=\mathrm{d}^{2} \alpha / \mathrm{d} s^{2} .
$$

The boundary conditions (3.4) become
a) $\alpha(s) \xrightarrow[s \rightarrow-\infty]{ } n \pi+\gamma e^{s} \quad$ implying $\dot{\alpha}(s) \xrightarrow[s \rightarrow-\infty]{ } \gamma e^{s}$
b) $\alpha(s) \xrightarrow[s \rightarrow+\infty]{ } m \pi$.

Hence the pendulum starts at "time" $s=-\infty$ from the unstable equilibrium position $\alpha(s)=n \pi$ with vanishing velocity. Then, if $f(s) \geqslant-\frac{1}{2}$, only two possibilities are allowed:
i) The pendulum does not move from the unstable equilibrium position [this corresponds to choose $\gamma=0$ in (3.8a)].
ii) After some oscillations the pendulum falls down in the stable equilibrium point

$$
\begin{equation*}
\alpha(s) \rightarrow\left(n \pm \frac{1}{2}\right) \pi \quad \text { as } \quad s \rightarrow+\infty . \tag{3.9}
\end{equation*}
$$

The case (i) corresponds to the trivial solution $U(x)= \pm 1$; the case (ii) is forbidden by the strong boundary conditions (3.8b). Therefore in this particular case we obtain again that the vacuum is not degenerate (with SBC), as we have proved in general in section 2. However, if for a sufficiently long period of "time" the external force $f(s)$ is negative enough (fig. 2), $\alpha(s)$ can start from 0 (or $n \pi$), move away $(\gamma \neq 0$), come back to 0 (or $m \pi$) under the effect of the external force $f(s)$, and finally remain there.

Fig. 1.

Such a kind of solution of (3.7) [and thus of (1.11)] is not trivial and satisfies the SBC (2.3); hence we have shown, following Gribov, that several different solutions of the gauge fixing conditions (1.10) and (1.11) can exist, even if SBC are imposed. Then the transversality condition (1.11) does not actually fix the gauge completely but leaves a certain amount of ambiguity.

This phenomenon can be better understood if one looks for infinitesimal.gauge transformations which preserve transversality; in other words, we wonder if transverse potentials $A_{i}\left(\hat{c}_{i} A_{i}=0\right)$ exist, such that one can find an infinitesimal transformation,

$$
\begin{align*}
& U(x)=I+i \varepsilon(x), \\
& \varepsilon(\cdot)=\varepsilon_{i}(x) \cdot \sigma_{i}, \quad \varepsilon_{i} \leqslant 1, \tag{3.10}
\end{align*}
$$

that sends A_{i} into an A_{i}^{\prime} which is still transverse $\left(\partial_{i} A_{i}^{\prime}=0\right)$. Under these hypotheses eq. (1.11) becomes

$$
\begin{equation*}
0=\partial_{i}\left[\partial_{i}+A_{i}, \varepsilon\right] \stackrel{\text { def. }}{=} \Delta(A) \varepsilon \tag{3.11}
\end{equation*}
$$

One immediately realizes that the determinant of the operator $-\Delta(A)$ is the Faddeev-Popov determinant for the Coulomb gauge [1]. Hence, infinitesimal transformations preserving transversality exist only for those configurations A_{i} which correspond to a vanishing eigenvalue of $\Delta(A)$ and thus to vanishing Faddeev-Popov determinant. The eigenvalue equation of $\Delta(A)$ is

$$
\begin{equation*}
-\Delta(A) \varepsilon=\lambda \varepsilon \tag{3.12}
\end{equation*}
$$

or, explicitly

$$
\begin{equation*}
-\Delta \varepsilon-\partial_{i}\left[A_{i}, \varepsilon\right]=\lambda \varepsilon . \tag{3.12'}
\end{equation*}
$$

One realizes by (3.12') that, foi A_{i} vanishing or small. $-\Delta(A)$ has only positive eigenvalues: however if A_{i} increases, an eigenvalue λ_{1} can cross zero and change sign; if A_{i} still increases, another positive eigenvalue λ_{2} can change sign, and so on. Then one can divide the space of transverse configurations $A_{i}\left(\partial_{i} A_{i}=0\right)$ into regions with different sign of the Faddeev-Popov determinant, separated by boundaries, where the Faddeev-Popov determinant vanishes (fig. 3) [1]. The situation is well illus rated by the previous example; if one considers infinitesimal transformations ($x<1$). eq. (3.5) becomes

$$
\begin{equation*}
0=\Delta \alpha(r)-2 \frac{1+2 f(r)}{r^{2}} \chi(r) \stackrel{\text { der. }}{=} \Delta(A) \alpha \tag{3.13}
\end{equation*}
$$

where Δ is the Laplacian in spherical coordinates, and $-\Delta(A)$ is the Faddeev-Popov operator. The eigenvalue equation for $\Delta(A)$ is

$$
\begin{equation*}
-\Delta(A) \alpha=\lambda \alpha \tag{3.14}
\end{equation*}
$$

Fig. 3.

Fig. 4.
that is

$$
-\Delta \alpha+2 \frac{1+2 f(r)}{r^{2}} \alpha=\lambda \alpha
$$

Equation (3.14') looks like the radial part of a Schrödinger equation; it has no bound states for $f=0$, but it has an increasing number of negative eigenvalues as $f(r)$ becomes more and more negative (fig. 4); hence the picture of fig. 3 is confirmed. In his second paper Gribov [1] has found another interesting result; for any transverse configuration close to a boundary (fig. 3), there exists another gauge equivalent transverse configuration again close to the boundary but on the other side of it. The situation in the configuration space of A_{i} can then be depicted as in fig. 5 , where the horizontal line represents the hypersurface corresponding to the transversality condition $\partial_{i} A_{i}=0$. The numbered lines represent the orbits generated by gauge transformations; two lines labelled by different numbers represent different physical situations, while the orbits labelled by the same number but with a different number of primes represent the same physical situation, expressed in gauges which are not continuously deformable to each other (we will come back to this point later). The points where the Faddeev-Popov determinant vanishes (the boundaries in fig. 3) are represented in fig. 5 by \bullet.

We shall conclude this section by noting that the Coulomb gauge is unambiguous (each orbit is crossed once and only once by the hypersurface $\partial_{i} A_{i}=0$) only in a subregion of C_{0}, close to the potential $A_{i} \equiv 0$ [in fig. 5 the orbit $3^{\prime \prime}$ crosses the hypersurface $\partial_{i} A_{i}=0$ once with $\operatorname{det}\left(-\Delta\left(A_{i}\right)\right)$ >0 - region C_{0} - and once with $\operatorname{det}\left(-\Delta\left(A_{i}\right)\right)<0$ - region C_{1}; hence there exist fields in C_{0} which admit Gribov copies].

Fig. 5.

4. Configurations not attainable continuously from the Coulomb gauge

In this section we are going to show [2-4] that there are physical time-dependent configurations $A_{\mu}(x)$ that cannot be gauge transformed, in a smooth way, to satisfy the transversality condition (1.10) together with the SBC [(1.13) and (2.3)]. In fact let us consider the Pontryagin number*

$$
\begin{equation*}
q=-\frac{1}{32 \pi^{2}} \int \mathrm{~d}^{4} x \varepsilon_{\mu v \alpha \beta} \operatorname{Tr}\left(F_{\mu v} F_{\alpha \beta}\right) \tag{4.1}
\end{equation*}
$$

If A_{μ} and $F_{\mu v}$ are regular everywhere Gauss's theorem allows us to transform the right-hand side of (4.1) into an integral over a very large close surface S_{3}^{\prime} homotopic to S_{3}; by using (1.13). (1.8) and (2.6) and by a suitable choice of S_{3}^{\prime} one can write

$$
\begin{equation*}
q=\Phi_{+}-\Phi_{-}+\Phi_{\mathbf{L}} \tag{4.2}
\end{equation*}
$$

where $\Phi_{ \pm}$are the quantities defined in eq. (2.5), calculated at time $x_{4}= \pm x$, and the lateral flux Φ_{L} is given by

$$
\begin{equation*}
\Phi_{\mathrm{L}}=\frac{1}{8 \pi^{2}} \int_{-\infty}^{+\infty} \mathrm{d} x_{4} \lim _{r \rightarrow \infty} \int \mathrm{~d}^{2} S_{i} \varepsilon_{i j k} \operatorname{Tr}\left(A_{j} A_{k} A_{4}\right) \tag{4.3}
\end{equation*}
$$

Now one immediately realizes that SBC (2.4), together with the requirement that A_{4} is smooth everywhere** (also for $r \rightarrow \infty$), force Φ_{L} to vanish. Moreover by the theorem proved in section 2 we know that SBC prevent vacuum degeneracy and then imply $\Phi_{+}=\Phi_{-}=0$.

Therefore we have proved that only configurations with trivial topology ($q=0$) can be obtained in the Coulomb gauge, with SBC, in a continuous way. However, one has to note that Jackiw. Muzinich and Rebbi [4] were able to prove, by studying spherically symmetrical configurations. that the single instanton [8] can be written in the Coulomb gauge with SBC if a time discontinuity is allowed. A possible time evolution of this kind is drawn in fig. 5 by a dashed line. One starts at $t=-x$ from the vacuum $A_{\mu} \equiv 0$ and then the field increases (moving towards right in fig. 5). One cannot however overcome the point - where the Faddeev-Popov determinant vanishes, bucause in such a case one could not reach orbits like 5 or 0^{\prime}. The orbit 0^{\prime} represents pure gauge fieids of the form

$$
\begin{equation*}
A_{\mu}=U^{-1} \partial_{\mu} U \tag{4.4}
\end{equation*}
$$

with

$$
\begin{equation*}
U(x) \sim \exp [i \alpha(r) \sigma \cdot x / r], \quad \alpha(0)=0, \quad \alpha(x)=\pi \tag{4.5}
\end{equation*}
$$

wh re \sim means homotopic. The mapping $x \rightarrow U(x)$ given in (4.5) is not topologically trivial and cannot be continuously deformed to the trivial one; for such an $U(x)$ the topological number Φ defined in (2.5) is i. Therefore it is clear from the theorem of section 2 that the orbit 0 cannot cross the hypersurface $\partial_{i} A_{i}=0$. However if at a certain time t_{0} one performs a non-trivial gauge transformation U^{-1}, with U given by (4.5), one jumps to the left of fig. 5 and can continue to move

[^2]to the right until reaching the vacuum again at time $x_{4}=+\infty$. Of course if one considers a multiinstanton built by instantons well separated in time, one can repeat this procedure as many times as it is necessary.

5. The case of weak boundary conditions

If one uses WBC [eq. (2.7)] instead of SBC the situation becomes much more complicated. One immediately realizes [1] that now even the vacuum is degenerate; in fact the theorem of section 2 does not apply anymore. Looking at the spherical situation (3.1), (3.3) with $f(r) \equiv 0$, one sees that now eq. (3.7) has non-trivial solutions, as the behaviour (3.9) is no longer excluded. Hence the vacuum has at least a degeneracy depending on four continuous parameters: the three coordinates of the origin and the size γ.

A complete analysis of the vacuum structure in the general case, with WBC, is not available at present; however a classification of some a priori possible configurations is given in ref. [3].

Of course when thie tield increases one still has all the ambiguity which is present in the SBC case, but moreover, one has extra-ambiguities of the same kind as the vacuum degeneracy.

One could hope that, having paid such a price in terms of ambiguity, at least one would be free from discontinuities. In fact the vacua with the boundary conditions (3.9) have Φ [defined in (2.5)] equal to $\mp \frac{1}{2}$, respectively; then, as is shown in ref. [2], it is possible to describe the single instanton [8] conliguration by a continuous $A_{\mu}(x)$. However, even if a rigorous proof does not exist, it is almost certain that multi-instanton configurations cannot be written in a continuous way in the Coulomb gauge even if WBC are used [3].

6. Final remarks

The Coulomb gauge situation can be summarized in the following way. There are two possible Hilbert spaces, corresponding to the choice of SBC or of WBC. These two spaces du not communicate with each other (theorem proved in ref. [3]) at least at the semiclassical level. The space with SBC has a single classical vacuum which is the usual one $A_{\mu}(x) \equiv 0$; on the other band, the space with WBC has two classes of degenerate vacua (the Gribov ones, with $\phi= \pm \frac{1}{2}$) which can tunnell into each other via the single instanton. In both spaces there are ambiguities, and configurations with topological charge $|q| \geqslant 1$ (SBC) or $|q| \geqslant 2$ (WBC) cannot be described by a smooth $A_{\mu}(x)$.

We can conclude our lecture by wondering if the pathologies we have described so far are properties of the Coulomb gauge and disappear by using other gauges. As a matter of fact, Gritov [1] has shown that ambiguities are present also in the covariant gauge $\partial_{\mu} A_{\mu}=0$, and Montonen [9] has shown that pathologies quite similar to those we have described affect the unitary gauge of spontaneously broken gauge theories. More generaily, a theorem due to Singer [10] states that, if the gauge field is defined on the manifold S_{4}, it is impossible to find a continuous and unambiguous gauge fixing condition. The Coulomb gauge with SBC can be seen as a particular case of this theorem, as it forces all the points at infinity of the space time R_{4} to have the same image under the mapping $x \rightarrow U(x)$. However, there exist other gauges which do not satisfy the hypotheses of the Singer theorem, like the temporal or the axial gauge, where some direction at infinity is
selected out. In these gauges, or in their improved versions [11, 12] no ambiguities or discontinuities arise. It seems then safer to work in these gauges and to drop the Coulomb one. However, one has to quote that Giibov [1] and Bender, Eguchi and Pagels [13] have proposed using the peculiar features of the Coulomb gauge to obtain quark confinement; however, their results seem to be gauge dependent $[14,15]$ and do not yet give a final answer to this challenging problem of QCD.

Acknowledgements

I wish to thank Peter Goddard for a careful reading of the manuscript.

References

[1] V.N. Gribov, Materials for the XII Winter School of the Leningrad Nuclear Research Institute (1977); V.N. Gribov, Quantization of non-Abelian gauge theorie:;, Nucl. Phys. B139 (1978) 1.
[2] S. Sciuto. Phys. Lett. 71B (1977) 129.
[3] M. Ademollo, E. Napolitano and S. Sciuto, CERN preprint TH. 2412 (1977), Nucl. Phys. B134 (1978) 477.
[4] 亿. Jackiw, I. Muzinich and C. Rebbi, Phys. Rev. D17 (19"8) 1576.
[5] D.H. Mayer and K.S. Viswanathan, Aachen preprint (1978).
[6] D.A. Nicole, Nucl. Phys. B139 (1978) 151.
[7] Y. Iwasaki, Princeton preprint COO-2220-130 (1978).
[8] A. Belavin, A. Polyakov, A. Schwartz and Y. Tyupkin, Ptys. Lett. 59B (1975) 85.
[9] C. Montonen, CERN preprint TH. 2477 (1978); see also:
A.P. Balachandran, H.S. Mani. R. Ramachandran and P. Sharan, Syracuse preprint COO-3533-108-SU-4211-108 (19781
[10] I.M. Singer, Communications in Math. Phys. 60 (1978) 7.
[11] J. Goldstone and R. Jackiw, Phys. Lett. 74B (1978) 31.
[12] A. Chodos, Phys. Rev. D17 (1978) 2624.
[13] K. Bender, T. Eguchi and H. Pagels (1977). Phys. Rev. D17 (1978) 1086.
[14] J.P. Greensite, Santa Cruz preprint (1977).
[15] R. Jackiw, Talk given at local Gables (1978).

[^0]: * Apart from the trivial one $\Lambda=$ const. which does not affect A_{μ}.

[^1]: * We do not write the time dependence explicitly as we shall work at fixed time throughout this section.

[^2]: * For simplicity we work in Euclidean space-time.
 ** Of course if one admits that A_{4} can become singular as $r \rightarrow \mu$, one can obtain any Φ_{L}, and also tunnel from SBC to WBC wic refs. [4] and [7]).

