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VII. Difficulties in Fixing the Gauge in Non-Abelian Gauge Theories 
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Ab~tra~'t : 

Some pt¢ blems arising from the use of the Coulomb gauge in SU(2) Yang-Mills theory are discussed. It is shown that: i) the trans- 
ver ;ality condition does not fix the gauge uniquely (Gribov ambiguity); ii) there exist physical configurations that cannot be described 
by a continuous Aj, in the Coulomb gauge. 
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I. Introduction 

A characteristic feature of any gauge theory is that the number of fields that appear  in the 
~ N a n # ~  is larger than the n u m ~  of effective degrees of freedom of the theory. Usually one 
tfiN t0 e ~ i n a t e  the redundant variables by imposing a suitable gauge fixing condition. For 
instance, electrodynamies can be discussed in terms of physical variables (the transverse compo- 
nents of the photon) by choosing the Coulomb gauge: 

OiA i = 0 .  (1.1) 

Given any configuration A~(x) one can change it to a purely transverse one, satisfying eq. (1.1), 
by means of a gauge transformation 

A, = A~, + 0,A. (1.2) 

In fact, by substituting eq. (1.2) in eq. (1.1) one gets 

- A A  = 0iA~, (1.3) 

which can be inverted, leading to 

1 
A = A OiA;. (1.4) 

Let us note, even if it is almost obvious, that the Laplacian A =- OiOi is an invertible operator only 
if one requires that A(x) is regular everywhere and does not explode for x -~ oo. In fact, in order 
to get one and only one solution of eq. (1.3) one has to impose these boundary conditions in such 
a way that no solution* of the homogeneous equation 

AA = 0 (1.5) 

exists. 
The aim of this lecture is to show that such a simple procedure cannot be directly extended to 

the non-Abelian case. We will study SU(2) Yang-Mills theory and we will use the following 
notation: 

A.  = eAi~ • tri/2i, (1.6) 

where e is the coupling constant and o s are the Pauli matrices. A gauge transformation on A~ gives 

A'~ = U-1A~,U + U-I~9~,U, (1.7) 

where the matrices U(x) are SU(2) group elements; U(x) can be parametrized in the qaaternionic 
form: 

] r r t . . I  U 4  : i • r  u ~-~1 ---- + IO' U i, 

where U,(x) (a = 1, 2, 3, 4) is a unit four-vector which lies on the unit sphere $3: 

U.U.  = 1. 

(1.8) 

{1.9) 

* Apart  f rom the triwal one A = const,  which does not  affect A~,. 
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If, starting from any A~(xg one tries to gauge transform it by means of eq. (1.7) to get an equivalent 
potential A~, that satisfies the transversality condition 

O,Ai = 0, (1.10,  

one is led to consider the equation 

O,A, + [D,(A), O,U. U -x]  = 0, (1.11) 

where  DI(A) is the covariant derivative 

DI(A) = Oi ,+ A i. (1.12) 

In contrast to its Abelian analogue (1.3), the eq. (1.11) in general does not fix the gauge transforma- 
tion uniquely. To be more precise, as Gribov [ 1] was the first to show, for large enough fields the 
eq. (1.11) admits several solutions; later it was shown [2--4] that there exist also configurations 
such that eq. (1.11) has no regular solution. In the next sections we will ,discuss in detail these different 
cases, starting with the analysis of the classical vacuum structure. 

Threughout this lecture we will limit our considerations to fields that become a pure gauge at 
very lar~,~ spatial or temporal distances; that is we always suppose: 

lira A t = U-IO~U, (1.13) 
R'-*  0o 

where R = x / /~  is the four-dimensional Euclidean distance from the origin. Then regular con- 
figurations At(x ) will always have finite Euclidean action and Pontryagin number. 

2. The vacuum structure 

In this section we will work at afixed time x4 and we will discuss the classical vacuum degeneracy 
in the Coulomb gauge. For pure gauge .fields 

A t = U-IOuU, F~, v = 0, (2.1) 

the gauge fixing condition (1.11) reduces to the simple form 

d,(U-IO~U) = 0, (2.2) 

which is the non-Abelian analogue of the homogeneous equation (1.5). In order to study eq. (2.2). 
we must first carefully make the boundary conditions precise. We will consider two kinds of 
boundary conditions. 

2.1. Strong boundary conditions (SBC) 

One can impose that the limit of the group element U(x) for large distance exists and does nor 
depemt on the direction: 

lira U(r, 0, tp) = const.; ~2.3i 
f"'~ OO 

in eq. (2.3) we have used spherical coordinates: r = x / ~  0 is the colatitude and (p is the azimuth. 
In terms of the potential Au, given by eq. (2.I), the condition (2.3) means that Ai vanishes faster 
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than l/r for r ~ oo 

!ira rA,(x) = 0. (2.4) 
p-,l~ QO 

So the condition (2.3) is actually very strong and it excludes relevant physical configurations; 
for instance in presence of a magnetic monopole the potential A~ has just a 1/r behaviour. However 
the strong boundary condition (2.3) has the advantage that it ¢ompactities the R 3 space to a 
sphere $3 (by identifying all the points at infinity of R3). Then the mapping x ~ U(x) is a mapping 
$3 ~ $3 and it is characterized by an homotopy class in lh(Sa). Therefore one can define a topo- 
logical number 

1 ~dax Tr(A,A~Ak)= 1 I dadfldysin2~sinfl" (2.5) (1) = 241t--- ~ 8Uk 21t2 
i( ) 

In the last paragraph we have used the expression (2.1)for At, the parametrizations (1.8)and 

U.  = sin ~ sin fl sin y (2.6) 
sin a cos/3 " 

COS 

It is clear by 6q. (2.5) that • must be an integer [for continuous mapping satisfying eq. (2.3)], 
namely, the number of times the group manifold $3 is covered by the image I(R3) of the space R 3. 

2.2. Weak boundary conditions (WBC) 

Another possibility is that the limit for large r of the group element U(x) exists but does depend 
on the direction" 

lim U(r, O, tp) = U(O, (p). (2.7) 
P--~ o o  

In such a case, which allows for magnetic monopoles, the potential Ai(x) has the following asymp- 
totic behaviour: 

Ai(x) ,_.'-% O(1/r). (2.8) 

If the weak boundary conditions (2.7) are imposed, the space R3 is no longer compactified to S 3 
but rather to the ball B3 in 3-dimensional space. Hence the quantity • defined in eq. (2.5) loses 
any topological meaning* and a priori can be any real number; the image I(R3) can cover the 
group manifold $3 an incomplete number of times, as the image of the boundary 0B3 does not 
have to shrink to a point. 

Let us note that SBC or WBC can be imposed not only on the vacuum stat~,s but on any con- 
figuration satisfying eq. (1.13). It is important to note that one can consistently choose either weak 

• A topological meaning of (I) can be recovered if one imposes some further conditions on U{O, dp) - U(x/r) defined in {2.7). For 
instance by requiring 

U ( - x / r )  = +_ U(x/r) {2.9) 

one gets that 4) must be integer or half integer respectively [5]. 
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or strong boundary conditions; in fact one can wove [3] by quite ~legant semiclassical arguments, 
both in the temporal and in the Coulomb gauge, that no tunnelling between configurations with 
different boundary conditions can occur. In most of the rest of this lecture we shall use the strong 
boundary conditions (2.3); only in section 5 we shall briefly discuss the weak boundary conditions 
(2.7). 

The vacuum structure in the Coulomb gauge is completely clarified by the following theorem 
(ref. [3], see also ref. [6]): the transversality condition (1.1), with the strong boundary conditions 
(2.3), fixes the vacuum uniquely, i.e. the only solution of eq. (2.2) is U ( x )  = const, which implies 
& ( x )  - O. 

The proof [3] consists of two steps. 
i) The SBC imply that, for large r, U(x) has the following asymptotic form: 

U(x) = M + N(x), (2.10) 

where M - const, and N(x) vanishes for r --, ~ .  By substituting eq. (2.10) in eq. (2.2) one gets that 
the asymptotic behaviour of N(x) is the following: 

I~, (x) ~ O(l/r). (2.1 l) 

ii) Eq. (2.2), that in terms of the four-vector Ua(x) takes the form: 

A U  a - -  - ( ~ i U b "  d i U b ) U a ,  (2.12) 

can be imagined to stem from a variational principle applied to the "action" of the non-linear a 
model in three dimensions: 

W = f d3x diUodiUa; U~U~ = 1. {2.13) 
3 

It is easy to prove, by scaling arguments, that Ua(x) = const, is the only solution of eq. (2.12) wkh 
finite "action" W. However from (2.10) and (2.12) we see that SBC lead to a finite W [if Ua(x) is 
regular everywhere, as we always assume]; then SBC imply that the only solution of (2.12) is 
Uo(x) = cons t . -  Q.E.D. 

We anticipate, as we shall see in section 5, that: on the contrary, if one uses WBC the Coulomb 
condition (2.1) is not able even to fix the vacuum uniquely. In the next section we shall show that 
the SBC, which are able to remove any ambiguity of the Coulomb gauge for the vacuum states, 
also allow the existence of several different solutions of eq. (1.11), if the field A, is large enough. 

3. 1ne Gribov ambiguity [ 1 ] 

Still assuming SBC, let us discuss the Coulomb gauge eq. (1.11) for non-vanishing F,,,. 
consider a simple example*, starting from a field which is already transverse: 

f(r) 

t,et us 

{3.1) 

* We do  not write the time dependence explicitly as we shall work at fixed time throughout  this section, 
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where f(r)  is any smooth function with the boundary  conditions: 

~imo f(r) = O(r); ,-,®lim f(r) = 0; (3.2) 

the first condition is aecessary to avoid singularities at x = 0 and the second one is the transcription 
of the SBC [eq. (2.4)]. We will consider the subclass of gauge transformations which preserve the 
spherical symmetry of Ai: 

U = exp (iot(r)6'x/r); (3.3) 

regularity of Ai at the origin and SBC (2.3) fix the asymptotic behaviour of ot(r): 

a) ot(r) ~ n n  + ~r 

b) ot(r) ~ ran, (3.4) 

where m and n are integers and ~, is an arbitrary real constant. By inserting eq. (3.1) and eq. (3.3) 
in eq. (1.11) one gets the following form of the Coulomb gauge condition [1 ] :  

d2ot 2 dot sin 2ot 
dr 2 + r dr - - ( l r 2  + 2f) = 0. (3.5) 

By the change of variables 

s = In r (3.6) 

eq. (3.5) becomes the equation of a damped pendulum with an external force (fig. 1): 

+ a - sin2~.(1 + 2f) = 0, (3.7) 

where 

= dot/ds, ~ = d2ot /ds  2. 

The boundary conditions (3.4) become 

a) ot(s) s - , -  ~o' n:r + ~e s imply ing  ~(s) ~_._ oo) ~e" 

b) ot(s) s-. + oo; ran. 
(3.8) 

Hence the pendulum starts at "time" s = - ~  from the unstable equilibrium position ot(s) = nn 
with vanishing velocity. Then, iff(s) >i -½,  only two possibilities are allowed: 

i) The pendulum does not move from the unstable equilibrium position [this corresponds to 
choose y = 0 in (3.8a)]. 

ii) After some oscillations the pendulum falls down in the stable equilibrium point 

ot(s) --- (n + !~,, " - 2 , , -  as s ~ + 2 .  (3.9) 

The case (i) corresponds to the trivial solution U(x) = + 1; the case (ii) is forbidden by the strong 
boundary conditions (3.8b). Therefore in this particular case we obtain again that the vacuum is 
not degenerate (with SBC), as we have proved in general in section 2. However, if for a sufficiently 
long period of "time" the external force f(s)  is negative enough (fig. 2), ot(s) can start from 0 (or nn), 
move away (V ~ 0), come back to 0 (or mn) under the effect of the external force f(s), and finally 
remain there. 
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I 

(2f.1) 

Fig. 1. Fig. 2. 

~f (s) 

.-112 Y 

Such a kind of solution of (3.7) [-and thus of (1.11)] is not trivial and satisfies the SBC (2.3): 
hence we have shown, following Gribov, that several different solutions of the gauge fixing condi- 
tions (1.10) and (1.11) can exist, even if SBC are imposed. Then the transversality condition (i.1 l) 
does not actually fix the gauge completely but leaves a certain amount of ambiguity. 

This phenomenon can be better understood if one looks for infinitesimal.gauge transformations 
which preserve transversality; in other words, we wonder if transverse potentials Ai ((~iAi := 0) 
exist, such that one can find an infinitesimal transformation, 

U(x) = I + ie(x), 

d , )  = e,i(x)'tri, ei "~ 1, (3.10) 

that sends Ai into an A'~ which is still transverse (0iA'~ = 0). Under these hypotheses eq. (1.11) 
becomes 

0 = t~.~[Oi + A~,e]%r'A(A)e.  (3.111 

One immediately realizes that the determinant of the operator -A(A) is the Faddeev-Popov 
determinant for the Coulomb gauge [1]. Hence, infinitesimal transformations preserving trans- 
versality exist only for those configurations A~ which correspond to a vanishing eigenvalue of 
A(A) and thus to vanishing Faddeev-Popov determinant. The eigenvalue equation of At.4t is 

-A(A)~ = 2~: (3.!2t 

or, explicitly 

- A e  - O i [A i ,  e ] = /L~:. (3.12') 

One realizes by (3.12') that, fo, A i vanishing or small., - A(A) has only positive eigenvalues: however 
if A~ increases, an eigenvalue 2~ can cross zero and change sign; if A~ still increases, another positive 
eigenvalue 22 can change sign, and so on. Then one can divide the space of transverse configurations 
A~(O~A~ = 0) into regions with different sign of the Faddeev-Popov determinant, separated by 
boundaries, where the Faddeev-Popov determinant vanishes (fig. 3) [1]. The situation is well 
illus':rated by the previous example; if one considers infinitesimal transformations (z~ ~ 1), eq. 
(3.5) becomes 

1 + 2 f ( r )  def. 
0 = Ag(r) - 2 ...... r2 ...... ~(r) = A(A)=, (3.131 

where A is the Laplacian in spherical coordinates, and -A(A) is the Faddeev-Popov operator. 
The eigenvalue equation for A(A) is 

-A(A)a  = ,;zt, (3.14) 
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Fig, 3. 

V(r) 

Fig. 4. 

r-- 

that is 

-A0c + 2 1 + 2f(r) r2 • - ~,~. (3.14') 

Equation (3.14') looks like the radial part of a Schr~dinger equation: it has no bound states for 
f = 0, but it has an increasing number of negative eigenvalues as f(r) becomes more and more 
negative (fig. 4); hence the picture of fig. 3 is confirmed. In his second paper Gribov [ 1] has found 
another interesting result: for any transverse configuration close to a boundary (fig. 3), there exists 
another gauge equivalent transverse configuration again close to the boundary but on the other 
side of it. The situation in the configuration space of Ai can then be depicted as in fig. 5, where the 
horizontal line represents the hypersurface corresponding to the transversality condition 01At = 0. 
The numbered lines represent the orbits generated by gauge transformations: two lines labelled 
by different numbers represent different physical situations, while the orbits labelled by the same 
number but with a different number of primes represent the same physical situation, expressed 
in gauges which are not continuously deformable to each other (we will come back to this point 
later). The points where the Faddeev-Popov determinant vanishes (the boundaries in fig. 3) 
are represented in fig° 5 by e. 

We shall conclude this section by noting that the Coulomb gauge is unambiguous (each orbit 
is crossed once and only once by the hypersurface c~A~ = 0) only in a subregion of Co, close to 
the potential Ai = 0 [in fig. 5 the orbit 3" crosses the hypersurface ~iA i = 0 once with det (-A(A~)) 
> 0 - region Co - and once with det (-A(Ai)) < 0 - region C1; hence there exist fields in Co 
which admit Gribov copies]. 

0"1" 2" 3" 4" " /~ M 

" ~ T - 7  . . . . .  r _ - - ~ .  . . . .  - r - ' v ' - - - = - z " - 7 " ~  . . . . . . . . . . . . .  

77 
2' 

Fig. 5. 
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4. Configurations not attainable continuously from the Coulomb gauge 

In this section we are going to show [2--4] that there are physical time-dependent configurations 
A~(x) that cannot  be gauge transformed, in a smooth way, to satisfy the transversality condit ion 
(1.10) together with the SBC [(1.13) and (2.3)]. In fact let us consider the Pontryagin number* 

q -- 3 - ~  d4x ~ , ~  Tr(F,~F~,p). {4.1) 

If A~, and F~, are regular everywhere. Gauss's theorem allows us to transform the right-hand side 
of {4.1) into an integral over a very large close surface S; homotopic to $3; by using (1.13). (1.8) 
and (2.6) and by a suitable choice of S; one can write 

q = ~+ - ~ _  + (I) L, (4.2) 

where ~± are the quantities defined in eq. (2.5), calculated at time X4 = + 7:, and the lateral 
flux (I) L is given by 

+ o o  

clot. = ~ dx4 lira d2Si ~i~, Tr (AjAkA4). {4.3) 

- - o 0  

Now one immediately realizes that SBC (2.4), together with the requirement that A4 is smooth 
everywhere** (also for r ~ oe), force q~. to vanish. Moreover by the theorem proved in section 2 
we know that SBC prevent vacuum degeneracy and then imply ~+ = ~ _  = 0. 

Therefore we have proved that only configurations with trivial topology (q = 0) can be obtained 
in the Coulomb gauge, with SBC, in a continuous way. However, one has to note that Jacking. 
Muzinich and Rebbi [4] were able to prove, by studying spherically symmetrical configurations. 
that the single instanton [8] can be written in the Coulomb gauge wit~ SBC if a time discontinuity 
is allowed. A possible time evolution of this kind is drawn in fig. 5 by a dashed line. One starts at 
t = - ~c from the vacuum A, -=- 0 and then the field increases (moving towards right in fig. 5). 
One cannot however overcome the point o where the Faddeev-Popov determinam vanishes. 
b~.cause in such a case one could not reach orbits like 5 or 0'. The orbit 0' represents pure gauge 
fie~ds of the form 

A~ = U -  td ,  U, {4.4t 

with 

U(x) ~ exp [i~(r)tr. x/r], ~(0) = 0, 0c(:c) = rt, t4.5/ 

wh:re ~ means homotopic. The mapping x ~ U(x) given in (4.5) is not topologically trivial and 
cannot be continuously deformed to the trivial one; for such an U(x) the topological number (1) 
defirtea in (2.5) is i. Therefore it is clear from the ,t. . . . . .  of o'~'-';,-''- 2 ,i,o, th,~ orbit 0' cannot c ro~  t l l l i . ~ U  1 l b , , I l l  ,~ ~.,~,., t 1 ~ ' t  It t t x u t  ~. x x,~., ,~ .  . . . . . . . . . . . . . . .  

tbc hypersurface c~A~ = 0. However if at a certain time to one performs a non-trivial ._~au~e~ trans- 
formation U - t  with U given by (4.5), one jumps to the left of fig. 5 and can continue to moxc 

* For  simplicity we work  in Eucl idean space-t ime. 
** Of  course if one admits  that A4 can become  singular as r ~ z ,  one can obtain any (i) L, and also tunnel from SBC to ~,VBC Iscc 

refs. I'4] and [7]). 
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to the right until reaching the vacuum again at time x4 = + ~ .  Of course if one considers a multi- 
instanton built by instantons well separated in time, one can repeat this procedure as many times 
as it is necessary. 

5. ~ e  case of weak boundary.conditions 

If one uses WBC [eq. (2.7)] instead of SBC the situation becomes much more complicated. 
One immediately realizes [1] that now even the vacuum is degenerate; in fact the theorem of 
section 2 does not apply anymore. Looking at the spherical situation (3.1), (3.3) with f ( r )  -- 0, 
one sees that now eq. (3.7) has non-trivial solutions, as the behaviour (3.9) is no longer excluded. 
Hence the vacuum has at least a degeneracy depending on four continuous parameters: the three 
coordinat,~ of the origin and the size ?. 

A complete analysis of the vacuum structure in the general case, with WBC, is not available at 
present; however a classification of some a priori possible configurations is given in ref. [3]. 

Of course when ttle field increases one still has all the ambiguity which is present in the SBC 
case, but moreover, one has extra-ambiguities of the same kind as the vacuum degeneracy. 

One could hope that, having paid such a price in terms of ambiguity, at least one would be free 
from discontinuities. In fact the vacua with the boundaryconditions (3.9) have ~ [defined in (2.5)] 
equal to T- ½, respectively; then, as is shown in ref. [2], it is possible to describe the single instanton 
1-8] cont~guration by a continuous A,(x). However, even if a rigorous proof does not exist, it is 
almost certain that multi-instanton configurations cannot be written in a continuous way in the 
Coulomb gauge even if WBC are used [3]. 

6. Final remarks 

The Coulomb gauge situation can be summarized in the following way. There are two possible 
Hilbert spaces, corresponding to the choice of SBC or of WBC. These two spaces do not com- 
municate with each other (theorem proved in ref. [3]) at least at the semiclassical level, l 'he space 
with SBC has a single classical vacuum which is the usual one Au(x) = 0; on the other t~and, the 
space with WBC has two classes of degenerate vacua (the Gribov ones, with ~ = + ½) wt, ich can 
tunneU into each other via the single instanton. In both spaces there are ambiguities, arid con- 
figurations with topological charge Iql >t 1 (SBC) or Iql >i 2 (wBc)  cannot be described by a 
smooth Au(x). 

We can conclude our lecture by wondering if the pathologies we have described so far are 
properties of the Coulomb gauge and disappear by using Other gauges, sAs a matter of fact, Gribov 
[1] has shown that ambiguities are present also in the covariant gauge ~9~A~, = 0, and Montonen 
I-9] has shown that pathologies quite similar to those we have described affect the unitary gauge 
of spontaneously broken gauge theories. More generally, a theorem due to Singer [ i0]  states 
that, if the gauge field is defined on the manifold $4, it is impossible to find a continuous and un- 
ambiguous gauge fixing condition. The Coulomb gauge with SBC can be seen as a particular case 
of this theorem, as it forces all the points at infinity of the space time R4 to have the same image 
under the mapping x --, U(x). However, there exist other gauges which do not satisfy the hypotheses 
of the Singer theorem, like the temporal or the axial gauge, where some direction at infinity is 
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selected out. In these gauges, or in their improved versions [ 11, 12] no ambiguities or discontinuities 
arise. It seems then safer to work in these gauges and to drop the Coulomb one. However, one has 
to quote that Glibov [1] and Bender, Eguchi and Pagels [13] have proposed using the peculiar 
features of the Coulomb gauge to obtain quark confinement; however, their results seem to be 
gauge dependent [14, 15] and do not yet give a tinal answer to this challenging problem of QCD. 

Acknowledgements 

I wish to thank Peter Goddard for a careful reading of the manuscript. 

References 

[10] 
[11] 
[12] 
[13] 
[14] 
[15] 

[1] V.N. Gribov, Materials for the XII Winter School of the Leningrad Nuclear Research Institute (1977); 
V.N. Gribov, Quantization of non-Abelian gauge theories, Nucl. Phys. B139 (1978) 1. 

[2] S. Sciuto, Phys. Lett. 71B (1977) 129. 
[3] M. Ademollo, E. Napolitano and S. Sciuto, CERN preprint TH.2412 (1977), Nucl. Phys. B134 (1978) 477. 
[4] ;t. Jackiw, !. Muzinich and C. Rebbi, Phys. Rev. DI7 (1978) 1576. 
[5] D.H. Mayer and K.S. Viswanathan, Aachen preprint (1978). 
[6] D.A. Nicole, Nucl. Phys. B!39 (1978) 151. 
[7] Y. [wasaki, Princeton preprint COO-2220-130 (1978). 
[8] A. Belavin, A. Polyakov, A. Schwartz and Y. Tyupkin, Pttys. Lett. 59B (1975) 85. 
[9] C. Montonen, CERN preprint TH.2477 (1978); see also: 

A.P. Balachandran, H.S. Mani. R. Ramachandran and P. Sharan, Syracuse preprint COO-3533-108 - SU-4211-108 q lg"~Si 
i.M. Singer, Communications in Math. Phys. 60 (1978) 7. 
J. Goldstone and R. Jackiw, Phys. Lett. 74B (1978) 31. 
A. Chodos, Phys. Rev. D17 (1978) 2624. 
K. Bender, T. Eguchi and H. Pagels (1977), Phys. Rev. D17 (1978) 1086. 
J.P. Greensite, Santa Cruz preprint (1977). 
R. Jackiw, Talk given at local Gables (1978). 


